Skip to main content

Learning to Love Math - Chapter 1

Chapter 1: Reversing Math Negativity with an Attitude Makeover

Chapter 1 was a little hard for me to get through  - I don’t know yet if it’s the author’s style, my lack of time to read for an extended period and really get into it, or the fact that I’m reading it on a Kindle (I’m not a huge fan of the Kindle…I really like books with pages that I can turn, but I’m trying to use the Kindle). Anyway for whatever reason, it’s been slow-going for me so far:) Chapter 1 had a few points that I thought were very interesting, so I will highlights those as briefly as I can (the most interesting point to me is close to the end of the post, so I hope you read to the end...or skip to the end)!  

 In Chapter 1, Willis states that the first step to success in math is having a positive attitude, though many of our students don’t have one.  Willis discusses the idea that “being bad” at math, or disliking math, generally seems to be acceptable in our society. She cites a 2005 poll of 1,000 adults that showed that twice as many people said they hated math than any other subject.  Additionally, it was found that 71% of polled adults couldn’t calculate miles per gallon on a trip and 58% couldn’t calculate a 10% tip for a lunch bill. However of those polled, only 15% wished they had learned more math in school. So, it’s ok to have trouble with math…and parents may certainly be passing this belief on to their children.

Some reasons for students’ math negativity, besides parental bias against math, include: low self-expectations due to past experiences, inadequate skills to succeed at learning math, failure to engage math through learning strengths, and fear about making mistakes. This negativity results in stress, low motivation, decreased levels of participation, boredom, low tolerance for challenge, failure to keep up with lessons, and behavior problems.

Willis discusses the fact that students are often drilled to memorize facts and processes without understanding the why behind what they are learning. Instead, they need to work with problems that have real-world application. If a real-life connection isn’t made, to provide personal value, Willis states that the brain “doesn’t care.”  She states that when students see math applied in real-life ways that they care about, they can then really “get” math. For example, rather than presenting a word problem about 67 people being seated at 8-person tables, students should be given 67 toothpicks and index cards and be asked to model the situation. This will build experiential knowledge.

When students are expected to learn arithmetic skills by rote memorization (particularly at the elementary level), but aren’t good at memorizing, they lose confidence in their ability to do math. According to Willis, this results in an increase of math anxiety, lowered self-confidence, alienation, and failure. Rather that memorizing facts, Willis suggests that it is more valuable to focus on recognizing patterns and constructing mental concepts that use foundational math facts.

I found the following ideas to be the most interesting in the chapter. To be interested in math, children must be comfortable with math (this makes sense) –the  environment needs to be physically and psychologically safe. The author suggests that when parents pressure their children to do well in math, it can cause children who can’t meet their parents’ expectations to suffer from depression, anxiety and illness. If students have been very stressed about math, it can take months to reverse their attitudes.  The point that really made me think (especially about someone in my own family) is this: when students are anxious, the information that enters their brains is less likely to reach the conscious thinking and long-term memory parts of the prefrontal cortex, and learning will not occur.  Stress is the “primary filter blocker” that needs to be overcome. Frustration due to confusion is also a creator of stress that can block learning.  Beyond my family, I KNOW that some students come to me feeling stressed and anxious from past math experiences (and other subject areas as well)...if their brains can't absorb information because it's basically been blocked by anxiety and stress (for who knows how long!), it's no wonder these students don't remember anything that they have "learned" in the past. How can they progress if they remain in that anxious state??

The rest of the chapter discusses some ways to help build math "positivity." I'll make that a separate post:)


Popular posts from this blog

Memory Wheels - First Day, Last Day, and Any Day in Between!

This post has been moved to:

Math Class - First Day Activity

Rectangle of pentominoes Many 6th graders seem to have a pretty negative attitude about math, so I try to do something interesting to "grab" them during our first class. Last year, during the first math class, we spent part of the period working with pentominoes. Before working with the pentominoes, however, we played a name game so we could learn each others' names (I find it impossible to start anything else if I don't know some names, and fortunately, I learn them fairly quickly). rectangle outline For the activity, I divided the students into groups of 3 or 4. The directions for the activity were not complicated - the task was to make a rectangle, using all of the pentominoes. I gave students an outline of the rectangle, as pictured to the left, so they would know the correct size of the rectangle. The squares in the grid are each one inch. The rectangle is 5 squares (inches) wide and 13 inches long (13 inches includes the row that has the "Pent

How Much Math Homework??

I am very curious about math homework in middle school, from a teacher perspective:     How much math homework do you give?     What kind of homework do you give?     How do you go over it in class? Let me explain why I ask these questions. I have taught 6th grade math for eight years, and every year, my goal is to "perfect" the homework issue. My basic issue is that I feel that I spend too much time going over it (not necessarily every day, but often). In the past, we have reviewed homework in the following ways:    1. going over answers as a class    2. self-checking answers that are on the board and sharing any questions    3. partner-checking and then verifying    4. choosing only a few problems to check When I taught elementary school (for 12 years), I never seemed to have this problem....we had 60 minutes for class and I never struggled to fit everything in. But at middle school, we have 44 minutes (minus time to switch for classes), and I just haven't fo