Skip to main content

What's Math Got to Do with It? - Chapter 3

Chapter 3: A Vision for a Better Future, Effective Classroom Approaches

In Chapter 3, Boaler describes two successful approaches that offered students experiences with real math work. These approaches were used in studies that Boaler conducted. The study details that she shares are very interesting (I love reading about research), and I've included the highlights here.

Boaler calls the first approach the Communicative Approach. She completed a four-year study, following about 700 students in three different high schools, to determine that this is a successful approach. Students at one particular school were detracked, algebra became the first course that all students took when entering high school, and the teachers met over several summers to design/alter their courses. In this approach the focus is on "multiple representations," like words, diagrams, tables, symbols, objects, and graphs. The students at this school explained their work to each other, and moved between different representations and communicative forms. Interestingly, these students defined math as a form of communication, or a language.

The students taught with this approach worked in groups and were taught that they are all smart, but have different strengths in different areas; everyone had something important to offer. The teachers involved in this approach reinforced the idea that being good at math involves asking questions, drawing pictures and graphs, rephrasing problems, justifying methods, and representing ideas, in addition to calculating. They also followed an instructional design (called complex instruction) that made group work more effective and promoted equity among the students. Students at this school learned to appreciate the differences in one another.

In comparison to the students in the other, more suburban high schools in the study (using traditional teacher-lecture methods), the students at this urban school ended up outperforming the others on algebra and geometry tests by the end of the second year of high school. By their senior year, 41% of the students in the urban district were taking precalculus and calculus, compared to 23% at the other schools.

The other approach Boaler describes is the Project-Based Approach. Students in two schools were followed for three years in this study, which included the observation of hundreds of hours of lessons, interviews with and surveys of students, as well as various assessments. As the name indicates, students in this group worked on projects that addressed math as a "whole" rather than as separate areas of math. In many cases, students were taught certain methods when they needed to use them in the course of a project, rather than being taught the concepts beforehand. For example, in a particular area-related project, some students ended up needing to use trig ratios, so the teacher taught them about trig ratios.
The projects were open enough that students could go in different mathematical directions - directions that interested them. Students could choose who to work with, so some worked alone, some in pairs, and some in groups.

The students at this school viewed mathematical methods as "flexible problem-solving tools," and ended up scoring higher than the national average on their exams, taken at age 16. For more details, you may want to read the book Boaler has published about this study - Experiencing School Mathematics.

As a result of her studies, Boaler concludes that students need to be actively involved in their learning and they need to be engaged in a broad form of math.

Do any readers use a project-based approach to teach math? If so, how does it work for you?


Comments

Popular posts from this blog

Memory Wheels - First Day, Last Day, and Any Day in Between!

This post has been moved to:  http://www.cognitivecardiowithmsmm.com/blog/memory-wheels-first-day-last-day-and-any-day-in-between

Math Class - First Day Activity

Rectangle of pentominoes Many 6th graders seem to have a pretty negative attitude about math, so I try to do something interesting to "grab" them during our first class. Last year, during the first math class, we spent part of the period working with pentominoes. Before working with the pentominoes, however, we played a name game so we could learn each others' names (I find it impossible to start anything else if I don't know some names, and fortunately, I learn them fairly quickly). rectangle outline For the activity, I divided the students into groups of 3 or 4. The directions for the activity were not complicated - the task was to make a rectangle, using all of the pentominoes. I gave students an outline of the rectangle, as pictured to the left, so they would know the correct size of the rectangle. The squares in the grid are each one inch. The rectangle is 5 squares (inches) wide and 13 inches long (13 inches includes the row that has the "Pent

How Much Math Homework??

I am very curious about math homework in middle school, from a teacher perspective:     How much math homework do you give?     What kind of homework do you give?     How do you go over it in class? Let me explain why I ask these questions. I have taught 6th grade math for eight years, and every year, my goal is to "perfect" the homework issue. My basic issue is that I feel that I spend too much time going over it (not necessarily every day, but often). In the past, we have reviewed homework in the following ways:    1. going over answers as a class    2. self-checking answers that are on the board and sharing any questions    3. partner-checking and then verifying    4. choosing only a few problems to check When I taught elementary school (for 12 years), I never seemed to have this problem....we had 60 minutes for class and I never struggled to fit everything in. But at middle school, we have 44 minutes (minus time to switch for classes), and I just haven't fo