Skip to main content

### What's Math Got to Do With It - Intro and Chapter 1

In the introduction to What's Math Got to Do With It, Boaler notes interesting trends - many adults say they hated math in school, but like math in their work. Many adults enjoy activities like Sudoku, that require logical thinking, but they did not enjoy their math experiences in school.

The math that is needed for working situations is logical thinking, comparing numbers, analyzing and reasoning. People need to be able to reason, problem solve and apply methods to new situations. An official report examining math needed in the workplace revealed that estimation is the most useful math activity.

Boaler references Conrad Wolfram's TED talk in which he talks about math as a four-step process: posing a question, constructing a model to help answer the question, performing a calculation, and converting the model back to the real-world solution by seeing if it answers the question.

Boaler shares that her book will identify the problems that American students encounter and will share some solutions.

In Chapter 1, Boaler talks about the difference between how students view math and how mathematicians view math: students see math as "numbers" and "rules," but mathematicians see math as "the study of patterns" or a "set of connected ideas."

According to Boaler, math is a "set of methods used to help illuminate the world." She discusses the Fibonacci sequence and the golden ratio, which many middle and high school students have never heard of.

Boaler discusses quite a few differences between "school math" and "mathematician math." Mathematicians work on long and complicated problems that involve combining many areas of math, while school children spend hours answering short questions that address the repetition of isolated procedures. Long, complicated problems encourage persistence, and an important part of "real math" is the posing of problems. According to Boaler, mathematics involves going from answer to question, while computation goes from question to answer.

The work of mathematicians is collaboratory. Mathematicians do not work in isolation - when interviewed, mathematicians have stated that they collaborate to learn from one another, increase the quality of ideas, and share the "euphoria" of problem solving. However, Boaler states, there are still many silent math classrooms where students work in isolation.

I enjoyed reading about the "meaning" of math, and I will pose the question to my students this week - "What is math?"

Reading this chapter has inspired me to create a couple posters that reflect what math really is.

### Differentiation and the Brain - Introduction

It's summer-time and time to get some reading done! Myself and my Tools for Teaching Teens collaborators are going to read and review Differentiation and the Brain, How Neuroscience Supports the Learner-Friendly Classroom , by David A. Sousa and Carol Ann Tomlinson.We will each be reviewing different chapters, and those blog posts will be linked together as we go. If you're interested in learning more about this book, check back and follow the links to the different chapters:) I'm going to give a quick review of the book introduction here, and then later today I'll be reviewing Chapter 1. According to the authors, differentiation is brain-friendly and brain-compatible! They describe the rise, fall, and rise of differentiation, starting with the one-room schoolhouses, where teachers taught all subjects to all students, of all ages, and HAD to differentiate - there was no other way! As the country's population grew, public schools grew, and students were separat

### Love to Doodle (and a freedbie)

Exponents Color by Number For most of my school life as a student (and even as an adult, during PD), I have really liked doodling! During lectures, discussions...it would help me focus, but also give me something to make me look busy, so I wouldn't get called on in class! I always hated being called on and almost never participated voluntarily:) I liked to draw cubes, rectangles, squiggly lines, etc, and color in different parts of the doodles. Download this freebie:-) I really wanted to make some color by number activities. Since I am not good at creating actual pictures, I decided to make my color by numbers similar to my random drawing/doodling. My Exponent Color by Number is most similar to my past doodles, but I thought it was a little too random, so I started using actual shapes. The Integer Operations Color by Number (freebie), as well as most of my other color by numbers are more structured, but so much fun for me to make! Computerized doodling! Anyone else